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A B S T R A C T   

The aim of this paper is to explore how rainfall mechanisms and catchment characteristics shape the relationship 
between rainfall and flood probabilities. We propose a new approach of comparing intensity-duration-frequency 
statistics of maximum annual rainfall with those of maximum annual streamflow in order to infer the catchment 
behavior for runoff extremes. We calibrate parsimonious intensity-duration-frequency scaling models to data 
from 314 rain gauges and 428 stream gauges in Austria, and analyze the spatial patterns of the resulting dis-
tributions and model parameters. Results indicate that rainfall extremes tend to be more variable in the dry 
lowland catchments dominated by convective rainfall than in the mountainous catchments where annual rainfall 
is higher and rainfall mechanisms are mainly orographic. Flood frequency curves are always steeper than the 
corresponding rainfall frequency curves with the exception of glaciated catchments. Based on the proposed 
approach of combined intensity-duration-frequency statistics we analyze elasticities as the percent change of 
flood discharge for a 1% change in extreme rainfall through comparing rainfall and flood quantiles. In wet 
catchments, the elasticities tend to unity, i.e. rainfall and flood frequency curves have similar steepness, due to 
persistently high soil moisture levels. In dry catchments, elasticities are much higher, implying steeper frequency 
curves of floods than those of rainfall, which is interpreted in terms of more skewed distributions of event runoff 
coefficients. While regional differences in the elasticities can be attributed to both dominating regional rainfall 
mechanisms and regional catchment characteristics, our results suggest that catchment characteristics are the 
dominating controls. With increasing return period, elasticities tend towards unity, which is consistent with 
various runoff generation concepts. Our findings may be useful for process-based flood frequency extrapolation 
and climate impact studies, and further studies are encouraged to explore the tail behavior of elasticities.   

1. Introduction 

The relationship between rainfall and flood discharge probabilities is 
important from both practical and theoretical perspectives. The design 
storm method widely applied in engineering practice consists of esti-
mating a hydrograph with given peak discharge probability from a 
synthetic rainstorm with the same probability using a rainfall-runoff 
model (Packman & Kidd, 1980; Pilgrim & Cordery, 1975). Another 

common procedure that transforms rainfall to flood probabilities is the 
rational formula, which estimates peak streamflow from a critical 
rainfall intensity. From a theoretical perspective, the interplay between 
the statistical behavior of extreme rainfall and catchment processes that 
produces the flood frequency curve is an interesting topic. For the hy-
pothetical case of rectangular rainstorms of fixed duration, a constant 
event runoff coefficient and invariant routing, the distribution functions 
of flood peaks and rainfall intensities are proportional, but for real world 
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storms and catchments, numerous factors make the flood frequency 
distribution deviate from that of the rainfall. 

The extreme rainfall distribution depends on the climatological sit-
uation at the site of interest. Its expected value has been found to be 
positively correlated with mean annual rainfall in analyses of hourly and 
daily rain gauge data in different climatic regions (United States, 
Australia, the British Isles, Japan, India, peninsular Malaysia) (Barbero 
et al., 2019). In these studies, daily time steps usually exhibited higher 
correlations than hourly, as the latter were mainly controlled by con-
vection, while the former were also controlled by other mechanisms 
such as large-scale dynamics and orographic effects that are more rele-
vant at the annual scale. Similarly, positive correlations between daily 
precipitation extremes and the wet-day mean rainfall have been re-
ported by Benestad et al. (2012) for more than 33,000 rain gauges across 
the globe. 

Single years with exceptional rainfall extremes such as from tropical 
storms tend to increase the coefficient of variation (CV) of the rainfall 
distribution and thus the steepness of the rainfall frequency curve (U. S. 
Weather Bureau, 1958). Depending on the region, these rare extremes 
can be associated with climate modes such as the El Niño-Southern 
Oscillation (ENSO) and the Pacific Oscillation (IPO) (Kiem et al., 2003) 
or with rare interactions of convection-favoring patterns (Piper et al., 
2016). Typically, in regions with frequent short-duration convective 
rainfall events, the CV of annual rainfall maxima is higher and rainfall 
frequency curves are thus steeper than in more humid regions where 
rainstorms are longer (Parrett, 1997; Schaefer, 1990). In intensity- 
duration-frequency statistics, a strong decay with duration reflects 
peaky rainstorms, suggesting dominance of convective rainfall (e.g. 
Awadallah, 2015; Breinl et al., 2020; Panthou et al., 2014; Sane et al., 
2018). Higher expected values of the rainfall distribution and larger CVs 
may lead to higher and steeper flood frequency curves, everything else 
being equal (Merz & Blöschl, 2003; Smith et al., 2011; Villarini & Smith, 
2010). 

Another relevant factor controlling the flood frequency curve is 
antecedent catchment wetness (Berghuijs et al., 2016; Komma et al., 
2007; Slater & Villarini, 2016). In wet catchments, storage capacities 
tend to be lower and event runoff coefficients tend to be higher, thus 
increasing flood discharges of a given probability relative to dry catch-
ments (Borga et al., 2007; Vivoni et al., 2007). More specifically, it has 
been suggested that the distribution of event runoff coefficients in-
fluences the steepness of the flood frequency curve: In arid catchments 
where infiltration excess dominates, the event runoff coefficients are 
mainly random as opposed to more humid catchments, where runoff 
coefficients are less variable (Merz & Blöschl, 2009b; Sivapalan et al., 
2005). Infiltration excess runoff is typical of convective rainfall regions 
with large CVs of rainfall extremes (Keefer et al., 2016), so the flood 
frequency curves are typically steeper than in more humid catchments 
dominated by synoptic rainfall (Basso et al., 2016; Franchini et al., 2005; 
Guo et al., 2014; Hashemi et al., 2000; Viglione et al., 2009). Steeper 
flood frequency curves can also be a consequence of the spatial distri-
bution of the rainfall, as rare extreme flood peaks can occur if locally 
high rainfall intensities match locally high soil moisture (Bell & Moore, 
2000; Zhu et al., 2018). Additionally, a steep flood frequency curve can 
be the result of rainfall exceeding a threshold of soil storage capacity 
(Rogger et al., 2012), a threshold of epikarst storage in karstic envi-
ronment (Li et al., 2017) or other threshold processes of runoff gener-
ation (Struthers & Sivapalan, 2007; Zehe & Sivapalan, 2009). 

Runoff routing may also impact the flood frequency curve (Blöschl & 
Sivapalan, 1997; Norbiato et al., 2008), as the largest floods are pro-
duced when storm duration matches the response time (Viglione & 
Blöschl, 2009). A faster runoff response with increasing event magni-
tude, as it often occurs due to a higher relevance of surface and near 
surface flow paths and greater surface flow depths, will be reflected in an 
increasingly steeper flood frequency curve with return period (Rogger 
et al., 2012). 

One way of quantifying the relationship between rainfall and flood 

probabilities is the concept of elasticity, which is defined as the relative 
change in streamflow divided by the relative change in precipitation (e. 
g. Sankarasubramanian et al., 2001). While in the past the elasticity 
concept in hydrology has mainly been applied to annual rainfall and 
streamflow, we believe it has also potential for rainfall and streamflow 
extremes. If the flood frequency curve is proportional to the rainfall 
frequency curve, the elasticity is unity. If the flood frequency curve is 
steeper than the rainfall frequency curve, elasticity is greater than unity. 
Studies on annual rainfall and streamflow found that streamflow is most 
sensitive to rainfall change in dry catchments due to the nonlinearity in 
the rainfall-runoff process (e.g. Chiew, 2006; Sankarasubramanian et al., 
2001; Tang et al., 2019; Yang & Yang, 2011). For extreme rainfall and 
floods, there seems to similarly exist a stronger sensitivity in dry 
catchments. For example, the data of Paquet et al. (2013) suggest that a 
1% increase of an extreme 72hr rainfall (300 mm) produced a 2.6%, 
2.0% and 1.5% increase in extreme runoff for dry, intermediate and wet 
conditions (estimated from Fig. 16 of Paquet et al. (2013)). However, to 
the best of our knowledge we are not aware of data-based regional an-
alyses that have explored flood sensitivities to extreme rainfall. 

Most of the above studies have analyzed the rainfall-to-flood prob-
ability transformation by a model-based derived flood frequency 
concept (e.g. Sivapalan et al., 2005; Viglione & Blöschl, 2009; Viglione 
et al., 2009; Zhu et al., 2018). Studies on the rainfall elasticity of 
streamflow have similarly been model-based (e.g. Chiew, 2006; Tang 
et al., 2019) or have focused on annual streamflow rather than extremes 
(e.g. Sankarasubramanian et al., 2001; Yang & Yang, 2011). While 
model-based approaches are able to isolate individual factors well, it is 
difficult to ascertain model validity. Real world processes may deviate 
from those assumed in the models as the consequence of the coevolution 
of climate and landscape processes (Perdigão and Blöschl, 2014). On the 
other hand, an analysis of a large data set of rainfall and runoff obser-
vations may be able to shed light on the more complex real-world 
relationship between rainfall and flood probabilities, including 
different rainfall mechanisms and non-linear runoff generation pro-
cesses as a function of soil type and geology. 

The aim of this paper therefore is to explore how rainfall mechanisms 
and catchment characteristics shape the relationship between rainfall 
and flood probabilities based on comprehensive runoff and rainfall ob-
servations. To this end we propose a new approach of comparing 
intensity-duration-frequency statistics of maximum annual rainfall with 
those of maximum annual streamflow. 

The analysis is based on a high quality data set of 314 rain gauges 
and 428 runoff gauges in Austria. In order to identify the effects of in-
dividual processes on the probability relationship we adopt the concept 
of comparative hydrology, contrasting catchments with different rainfall 
and runoff generation processes (Blöschl et al., 2013). Rather than 
evaluating individual events we estimate intensity-duration-frequency 
statistics for both rainfall and streamflow and compare them for 
equivalent return periods, evaluating the elasticity of floods to rainfall 
extremes. In order to minimize the effects of snow melt, we focus on the 
summer season when most of the floods in Austria occur (Gaál et al., 
2012). 

The relevance of the study is twofold. First, the elasticities explored 
here enable more informed extrapolations to larger than observed floods 
using rainfall statistics (e.g. Goel et al., 2000). Second, the elasticities 
may also shed light on the impact of climate change on flood through 
changing rainfall extremes. The study may also underpin a more 
informed application of methods for estimating design floods. The 
research addresses two of the 23 Unsolved Problems in Hydrology 
(UPH), i.e. “5: What causes spatial heterogeneity and homogeneity in 
runoff, evaporation, subsurface water and material fluxes” and “10: Why 
are runoff extremes in some catchments more sensitive to land-use/ 
cover and geomorphic change than in others?” (Blöschl et al., 2019). 

The paper is structured as follows: section 2 provides an overview of 
the study region and data. The methods section 3 introduces the 
intensity-duration-frequency models for both extreme rainfall and 
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streamflow and the analytical solution of the extreme rainfall elasticity 
to floods, which we use to compare the rainfall and streamflow distri-
butions. In the results section 4, we explain the spatial patterns of the 
rainfall and streamflow characteristics as well as the elasticities by 
rainfall mechanisms, topography, soils, geology and climate variables. 
The paper finishes with a discussion and conclusions. 

2. Study region and data 

The study is set in Austria (84,000 km2). In the North, East and South 
East elevations are below 200 m above sea level, while the highest 
Alpine summits reach over 3,500 m (Fig. 1a). Mean annual rainfall 
ranges from less than 400 mm yr− 1 in the East to more than 3000 mm 
yr− 1 in the West. 

We used hourly streamflow data from stream gauges in Austria for 
the period 1976–2015 (June to August), with a mean length of 36 years 
(maximum of 40 years, minimum of 21 years). Time series of catchments 
strongly influenced by hydraulic infrastructure were excluded, which 
resulted in 428 catchments with areas ranging from 3.9 km2 to 4,792 
km2 and a median of 125 km2 (Fig. 1b). We also used hourly rainfall 
observations from 314 Austrian rain gauges for the period 1950–2016 
(June to August) with a mean length of 20 years (maximum of 43 years, 
minimum of 10 years) (Fig. 1b). Catchments impacted by Karst springs 
were identified based on a visual comparison with hydrogeological 
maps. 

Rainfall and flood mechanism vary considerably within the study 
region. In general, convective rainfall and flash floods are most frequent 
in the lowlands, identifiable by a higher frequency of hailstorms, severe 
wind gusts and tornados in these regions (Fig. A1, Dotzek et al. (2009) 
and Merz and Blöschl (2003)), while short-rain and long-rain floods 
from orographic rainfall are most frequent along the Alpine ridge (Merz 
& Blöschl, 2003), aligned with longer wet spells and shorter dry spells 
along the Alpine ridge compared to the lowlands (Fig. A2). Throughout 
Austria, floods are more frequent in the summer than in the winter (Merz 
& Blöschl, 2003). 

To investigate the regional differences, rain gauges and catchments 
were grouped into five regions based on the previous rainfall-based 
classifications by Matulla et al. (2003), Seibert et al. (2007) and Breinl 
et al. (2020) (Fig. 1b). We chose a rainfall-based classification in order to 
better understand regionally dominant factors in runoff formation. (i) 
The “Western orographic” region is dominated by orographic rainfall 
due to airflows from Western, NNW and NW directions. Long-rain floods 
are most frequent and the highest catchments are affected by glacier 
melt (Gaál et al., 2012). (ii) In the “Northern orographic” region heavy 
rainfall is mainly caused by NNW, NW and West airflows from the 
Atlantic (Seibert et al., 2007) producing long-rain floods. (iii) In the 
“Northeastern convective” region in the northern lowlands of Austria, 
frequent convective rainstorms produce flash floods, and Westerly flows 
produce long-rain floods. The latter include “Vb” weather situations, 
where moist air from the Adriatic sea is advected causing heavy rainfall 
(Seibert et al., 2007). (iv) The “Eastern mixed” region is influenced by 
convective activity, partly due to the hilly terrain, which increases the 
instability of the boundary layer (Merz & Blöschl, 2003) leading to 
frequent flash floods, and hail storms. (v) The “Southern mixed” region 
is similarly influenced by convective activity, sometimes associated with 
weak gradient situations, and rainfall extremes can also be related to the 
advection of humid air from the Mediterranean (Gaál et al., 2012; Sei-
bert et al., 2007). 

Flood response is also influenced by geology (Fig. 1c). The Flysch 
zone along the Northern fringe of the Alps is characterized by low 
subsurface permeability and thus surface or near surface flow paths, 
leading to flashy response. Similarly, shallow soils and efficient drainage 
networks in the Southeast lead to short response times (Gaál et al., 
2012). On the other hand, in the Phyllite region in the South, deeply 
weathered metamorphic rock is associated with deep flow paths and 
slow flood response (Gaál et al., 2012). The latter is also typical for the 

Fig. 1. (a) Topography of Austria with river network and glaciated areas. (b) 
Five rainfall regions representing different dominating rainfall mechanisms, 
rain gauge network and catchment centroids of gauged catchments. Catchments 
impacted by karst are marked with crosses, those by glaciers with asterisks. (c) 
Geology of Austria. 

Fig. 2. Relationship between flood iq and rainfall iP intensities for an example 
catchment (“Melk”, catchment area 95.2 km2). Dashed black lines indicate 
constant durations d, dotted red lines indicate constant return periods T. 
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catchments dominated by gravel and sand aquifers, for example in the 
Northwest and East (Gaál et al., 2012). 

3. Methods 

Studies that explain the generating mechanisms of floods in a prob-
abilistic context usually compare the flood frequency curve with event- 
based rainfall and catchment drivers (e.g. Arnaud & Lavabre, 2002; 
Rahman et al., 2002; Stein et al., 2021). In this paper, however, we have 
chosen the flood-duration-frequency (QDF) curve (e.g. Cunderlik & 
Ouarda, 2006, 2007; Javelle et al., 2003; Javelle et al., 2002) as a 
starting point instead, in order to approach the problem in a more 
general way. A QDF curve is composed of extreme value distributions of 
streamflow for different aggregation intervals. For example, one iden-
tifies the maximum hourly streamflow (i.e. streamflow averaged over 
one hour) in every year and constructs a frequency distribution from 
that. In a similar way frequency distributions are constructed for other 
aggregation intervals, thus obtaining a family of curves for a particular 
catchment. In the limit of the aggregation interval of d = 0, the QDF 

curve is equivalent to the traditional flood frequency curve. The QDF 
curve can therefore be considered an extension of the latter, as it not 
only contains information on the peak but also on the shape of the 
hydrographs. For example, if the 1hr and 12hrs distributions are similar, 
hydrographs are subdued, while much larger streamflow for 1hr than for 
12hrs points towards peaky hydrographs. 

The idea of QDF curves is similar to that of intensity-duration- 
frequency (IDF) curves of rainfall (e.g. Sivapalan & Blöschl, 1998), 
which are estimated in an analogous way. The IDF curves are a finger-
print of the extreme rainfall regime in terms of increasing rainfall in-
tensities with increasing return period and decreasing duration. A steep 
dependence of rainfall intensity on the return period (i.e. representing a 
large variability between years) may indicate the dominance of 
convective over frontal rainfall mechanisms (Parrett, 1997; Schaefer, 
1990). 

Because of the similarity of the IDF and QDF concepts, their com-
parison is straightforward. In fact, for a hypothetical rainfall-runoff 
transformation where all rainfall becomes runoff (event runoff coeffi-
cient rc = 1) and an infinitely fast runoff concentration (time of 

Fig. 3. Relationship between flood iq and rainfall iP intensities (a,b) and related elasticities (c,d) estimated from observed rainfall time series at the rain gauge “Hohe 
Warte” and a linear reservoir over a range of storage coefficients k. (a) Relationship for d = 1hr and (b) T = 2yrs. (c) Elasticities ε1 assuming d = 1hr is constant at a 
return period of T = 2yrs. Blue to red points correspond to varying k and a runoff coefficient rc = 1; Gray points correspond to the median of 100 simulations for each 
k with rc varying randomly according to a beta distribution with parameters α = 2 and β = 5, i.e. a mean of about 0.29. The shaded area corresponds to the 5th and 
95th percentiles of the simulations. (d) Elasticities ε2 assuming T = 2yrs is constant at a duration of d = 1hr. Blue to red points correspond to varying k and rc = 1; 
Gray line and shaded area correspond to randomly varying rc as in (c). 
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concentration tc = 0), IDF and QDF curves are identical. In reality, the 
event runoff coefficient is smaller than 1 and the time of concentration is 
greater 0, and therefore the QDF curve will differ from the corre-
sponding IDF curve. The deviations will depend on runoff generation 
(event runoff coefficients and their distribution), runoff concentration 
(times of concentration and any nonlinearities that may be present) as 
well as the rainfall characteristics. For example, in catchments with 
short response times, short intense rainstorms will lead to particularly 
high flood peaks and the QDF curve will therefore mainly reflect the 
short durations of the IDF curve, while the longer durations are less 

relevant (see Fig. 7a in Viglione & Blöschl (2009)). 
In order to shed light on the similarities between the QDF curves and 

their associated IDF curves we fit IDF and QDF models independently to 
observations of rainfall and streamflow data, respectively, and compare 
them in a second step. 

3.1. Probability models for rainfall and streamflow extremes 

For representing extreme rainfall, we adopt the model of Kout-
soyiannis et al. (1998): 

iP =
a(TP)

b(dP)
(1) 

where iP is the maximum annual rainfall intensity (mm hr-1) of 
duration dP at a station, and a and b are terms that only depend on the 
return period TP and the duration dP, respectively. The denominator is 
parameterized by a scaling relationship with duration, while the 
enumerator is represented by a Gumbel distribution, which was found to 
represent the Austrian rainfall data well (Breinl et al., 2020). The IDF 
model (quantile function) is thus defined as (Koutsoyiannis et al., 1998): 

iP =
a(TP)

b(dP)
= λP

ψP − ln
[

− ln
(

1 −
1

TP

)]

(dP)
ηP

with λP > 0;TP > 1; dP ≥ 1hr; 0 < ηP < 1

(2) 

with the location parameter ψP, the scale parameter λP and the 
scaling parameter ηP. 

In order to facilitate the comparison with rainfall, we use an analo-
gous model for streamflow, i.e., the QDF relationship is represented by 

iq =
a(Tq)

b(dq)
= λq

ψq − ln
[

− ln
(

1 −
1
Tq

)]

(dq)
ηq

with λq > 0;Tq > 1; dq ≥ 1hr; 0 < ηq < 1

(3) 

where iq is the maximum annual specific streamflow (mm hr-1). A 
log-likelihood ratio test (e.g. Smith, 1992) on the Austrian data 
confirmed that the Gumbel distribution is preferable over a GEV dis-
tribution for the majority of gauges. 

The parameters of the IDF and QDF models can be interpreted as 
follows: The scale parameters λP and λq, for a given duration, are directly 
proportional to the standard deviations σP and σq of the random vari-
ables: 

σP = λPdP
− ηP

π̅
̅̅
6

√ ; σq = λqdq
− ηq

π̅
̅̅
6

√ (4) 

The location parameters ψP and ψq describe the shift of the distri-
butions, i.e. a higher location parameter implies higher rainfall or 
streamflow extremes, ceteris paribus. The average magnitudes of rain-
fall and streamflow extremes are defined by the expected values μP and 
μq of the random variables 

μP = λPdP
− ηP (0.5772 + ψP);

μq = λqdq
− ηq (0.5772 + ψq)

(5) 

and thus depend on the duration, scale and scaling parameters. 
The scaling parameters ηP and ηq quantify the decay of intensity with 

increasing duration. At stations where extreme rainstorms are short (e.g. 
due to convective rainfall), ηP tends to be high, reflecting a strong decay, 
whereas at stations where extreme rainstorms are longer (e.g. due to 
frontal rainfall) ηP tends to be lower (Llasat, 2001; Mohymont et al., 
2004; Panthou et al., 2014). For example, Mohymont et al. (2004) and 
Panthou et al. (2014) who used a similar scaling model found high 
values of ηP in zones of high convective activity. For the case of 
streamflow, the scaling parameter ηq reflects the flashiness of catchment 
response, i.e. slim hydrographs are associated with larger values of ηq 

Table 1 
Model parameters and spatial process indicators used in each catchment in the 
correlation analysis.  

Information Abbreviation Description Unit 

Model parameters 
(streamflow) 

λq  Scale parameter 
(proportional to the 
standard deviation of 
the streamflow 
extremes for a given 
duration) 

mm 

ψq  Location parameter 
(magnitude of the 
streamflow extremes, 
ceteris paribus) 

– 

ηq  Scaling parameter 
(change of intensity 
with duration, 
indicator for flashiness 
of response) 

– 

Model parameters 
(rainfall) – 
interpolated from 
rain gauge 
locations to 
catchment 
centroids 

λP  Scale parameter 
(proportional to the 
standard deviation of 
the rainfall extremes 
for a given duration) 

mm 

ψP  Location parameter 
(magnitude of the 
rainfall extremes, 
ceteris paribus) 

– 

ηP  Scaling parameter 
(change of intensity 
with duration, 
indicator for 
convective activity) 

– 

Topographic indices area Area of catchment km2  

elevation Mean catchment 
elevation (m.a.s.l.) 

m 

slope Mean topographic 
slope 

% 

network density Density of river 
network 

m/km2 

Soil attributes soil depth Depth of soils m 
bulk density Bulk density of soils kg/m3 

Fluvisol, Lithosol, 
Rendzina, Phaeozem, 
Chernosem, 
Cambisol, Luvisol, 
Podsol, Histosol 

Fraction of area of 
Fluvisol, Lithosol, 
Rendzina, Phaeozem, 
Chernosem, Cambisol, 
Luvisol, Podsol and 
Histosol in catchment 

% 

Geology Carbonate rock, 
Phylitte, Granite, 
Gravel and sand, 
Flysch, Clay 

Fraction of area of 
Carbonate rock, 
Phylitte, Granite, 
Gravel and sand, 
Flysch and Clay in the 
catchment 

% 

Climate indicators MAP Long-term mean 
annual rainfall 

mm 
year− 1 

MSP Long-term mean 
seasonal summer 
rainfall June/July/ 
August 

mm 
season- 

1 

Event runoff 
coefficients 

– Event runoff 
coefficients for the 
summer season June/ 
July/August   
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than more subdued hydrographs. 
The CVs of iP and iq are expressed as: 

CVP =
π

̅̅̅
6

√
(0.5772 + ψP)

;

CVq =
π

̅̅̅
6

√
(0.5772 + ψq)

(6) 

This means, the CVs (Equation (6)) only depend on the respective 
location parameters ψP and ψq. This is a consequence of the form of the 
scaling models (Equations (2) and (3)). 

Annual maximum intensities of rainfall were extracted from the 
hourly rainfall series for the period June-August using a moving window 
of five durations (1hr, 3hrs, 6hrs, 12hrs, 24hrs). Empirical return periods 
were assigned to each annual maximum for each duration using Grin-
gorten plotting positions (Koutsoyiannis et al., 1998). All parameters of 
the rainfall model were then fitted in one step by minimizing the loga-
rithmized least squares deviation between the intensities of the obser-
vation and the model using the derivative-free optimization algorithm of 
Powell (2009). The mean absolute percentage difference (averaged over 
all gauges and durations) between the fitted intensities and the in-
tensities obtained by separately fitting Gumbel distributions with 

maximum likelihood was 3.0% (2.8% for d = 1hr, 4.1% for d = 24hrs) 
for T = 2yrs, and 8.5% (12.7% for d = 1hr, 10.4% for d = 24hrs) for T =

100yrs. The streamflow model was fitted in an analogous way and the 
corresponding goodness of fit figures were 7.0% (5.1% for d = 1hr, 7.0% 
for d = 24hrs) and 8.5% (9.6% for d = 1hr, 11.7% for d = 24hrs), 
respectively. 

3.2. Combined rainfall-flood relationship 

The IDF and QDF curves for a given catchment can be compared in 
different ways. Here, we chose to compare streamflow quantiles with the 
rainfall quantiles by matching return periods and matching durations, i. 
e. setting Tq = TP = T and dq = dP = d. This comparison does not imply 
a relationship of rainfall and streamflow of individual events. Instead it 
examines the similarities of the two distributions irrespective of the time 
extreme rainfall and floods occur. The equivalence of Tq and TP seems an 
obvious choice for comparing the two distributions, because it is a 
traditional assumption in design methods (e.g. design storm method). 
Again, this assumption does not imply that Tq and TP of a single event 
are identical (which is often not the case, see for example Alfieri et al., 
2008; Rahman et al., 2002, Viglione et al., 2009). Instead, it provides a 

Fig. 4. Interdependencies of the calibrated (interpolated) model parameters of the rainfall model λP (scale parameter representing rainfall variability), ψP (location 
parameter representing rainfall magnitude, ceteris paribus) and ηP (scaling parameter representing the dependence on duration). Point sizes relate to catchment 
centroid elevations and colors indicate rainfall regions in Austria (Fig. 1b). 

Fig. 5. Cumulative distribution functions of rainfall iP (upper row) and specific streamflow iq (bottom row) extremes with a duration of 1hr in the five rainfall 
regions. Colored lines represent the median CDFs in each region, numbers in the plot area refer to the 5% and 99% quantiles (italic) of the median. Dashed and dotted 
grey lines represent catchments impacted by Karst springs and glaciers, respectively (see Fig. 1b). 
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common reference point of the distributions. The assumption of setting 
dq = dP is less obvious, given that one is usually interested in dq = 0 
while accounting for various dP. We have chosen here to set dq equal to 
dP, to allow for a more generalized comparison that goes beyond the 
flood peak distribution. However, careful consideration of the implica-
tions of this assumption is necessary (also see discussion). 

Making the above assumption and by combining Equations (2) and 
(3), we can now plot, for each catchment, the rainfall-flood probability 
relationship iq(iP,T, d) (Fig. 2), where constant duration d and constant 
return period T are represented by dashed black and dotted red lines, 
respectively. 

In order to characterize the behavior of the iq(iP,T, d) relationship, 
we evaluated the elasticity of streamflow to changes in rainfall as a 
function of T and d. We first expressed the relationship in terms of 
d const., which is defined as: 

iq(iP) = d− ηq λq

(
dηP ⋅iP

λP
− ψP + ψq

)

with λP > 0; λq > 0; d ≥ 1hr; 0 < ηP < 1; 0 < ηq < 1
(7) 

If d = const., Equation (7) has a constant slope λqdηP

λPdηq (as reflected by 
the dashed black lines in Fig. 2). From Equation (7), the elasticity ε1 of 
streamflow relative to changes of rainfall assuming d = const. is 

obtained as: 

ε1 =
∂iq(iP)

∂iP
⋅

iP

iq(iP)
=

dηP iP

λP

(
dηP iP

λP
− ψP + ψq

)

with λP > 0; d ≥ 1hr; 0 < ηP < 1; lim
iP→∞

ε1 = 1

(8) 

Interestingly, ε1 depends neither on the streamflow scale parameter 
λq nor on the streamflow scaling parameters ηq. By inserting iP into 
Equation (8), ε1 can also be expressed in terms of T as  

ε1 =
ψP + u
ψq + u

, with the Gumbel reduced variate

u = − ln
[

− ln
(

1 −
1
T

)]

; lim
T→∞

ε1 = 1
(9) 

which indicates that ε1 is only a function of the return period and the 
location parameters. For CVP=CVq, ε1 = 1. On the other hand, 
expressing the iq(iP,T, d) relationship in terms of T = const. (red dotted 
lines in Fig. 2) gives: 

iq(iP) = λq

(
iP

λP(ψP + u)

)
ηq
ηP
(
ψq + u

)

with λP > 0; λq > 0;T ≥ 1; 0 < ηP < 1; 0 < ηq < 1
(10) 

Fig. 6. Cumulative distribution functions of rainfall iP (upper row) and specific streamflow iq (bottom row) extremes with a duration of 24hrs in the five rainfall 
regions. Colored lines represent the median CDFs in each region, numbers in the plot area refer to the 5% and 99% quantiles (italic) of the median. Dashed and dotted 
grey lines represent catchments impacted by Karst springs and glaciers, respectively (see Fig. 1b). 

Fig. 7. Distribution of rainfall and streamflow model parameters in five rainfall regions in Austria (Fig. 1b). Left boxplot in each region refers to the rainfall model 
parameters, right boxplot to the streamflow model parameters. (a) Scale parameters λP and λq of the rainfall and streamflow model, respectively. (b) location pa-
rameters ψP and ψq. (c) scaling parameters ηP and ηq.
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from which the elasticity ε2 for T = const. is obtained as: 

ε2 =
∂iq(iP)

∂iP
⋅

iP

iq(iP)
=

ηq

ηP
(11) 

To give a more intuitive illustration of the IDF-QDF relationship, we 
performed simulations convoluting an observed rainfall time series (43 
years) with a linear reservoir, and analyzing the resulting hydrographs 
according to Equation (3). Fig. 3a shows the mapping of IDF and QDF 
curves for d = 1hr and different return periods T implicit in the mag-
nitudes of iq and iP. For the limiting case of a response time of 0 (i.e. 
storage coefficient of the linear reservoir k = 0) and a runoff coefficient 
rc = 1, streamflow is equal to rainfall and the relationship plots on the 
1:1 line. As k increases, the streamflow event peaks decrease and so does 
iq. Fig. 3b shows the relationship for Tq = TP = 2yrs and different du-
rations d implicit in the magnitudes of iq and iP. Again streamflow 

decreases with increasing k, particularly for short durations. For long 
durations, as demonstrated through experiments assuming block rainfall 
and varying storm durations ds (Blöschl & Sivapalan, 1997), the 
decrease is less pronounced because in a linear system the peak is 
approximately proportional to ds/k, which is similar to our approach 
using different aggregation intervals, i.e. d/k. 

The simulations also allow an illustration of the behavior of the 
elasticities ε1 and ε2. For a storage coefficient k = 0 and a runoff coef-
ficient rc = 1, both ε1 and ε2 are unity, due to the 1:1 mapping of pre-
cipitation to streamflow, meaning a 1% change in rainfall relates to a 1% 
change in streamflow (Fig. 3c). With increasing k, the elasticity ε1 de-
creases to about 0.85. This is because, with higher k, rainfall in the time 
steps adjoining the annual maxima becomes increasingly more relevant 
in determining the maximum annual streamflow due to the convolution 
of the linear reservoir. While for small k the annual maxima of the 
rainfall and streamflow mostly occur on the same day, this synchronicity 

Fig. 8. Spearman rank correlations rs between streamflow model parameters, rainfall model parameters, topographic indices, soil attributes, geology and climate 
indicators in 428 catchments (Table 1). The streamflow model parameters are λq (scale parameter representing streamflow variability), ψq (location parameter 
representing the magnitude, ceteris paribus) and ηq (scaling parameter representing flashiness of catchment response). The rainfall parameters are λP (scale 
parameter representing rainfall variability), ψP (location parameter representing the magnitude, ceteris paribus) and ηP (scaling parameter as an indicator of 
convective activity). For rcCV, only 342 of the 428 catchments could be analyzed. Correlation coefficients significant at the 5% level are in black font. 
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of date of occurrence is lost with increasing k. In the case of ε2, the 
decrease of the elasticity with k is more pronounced (from 1 to about 
0.1), which relates to the above described dependence of the peak 
reduction on d/k. 

In order to test the sensitivity of the elasticities to the presence of 
randomness in the runoff coefficient, we assumed the runoff coefficient 
for each event (defined as rainfall wet spell) to vary randomly between 
0 and 1 according to a beta distribution with a mean of 0.29 (α = 2, β =

5) instead of using rc = 1 (Fig. 3c and Fig. 3d). These values of α and β 
are representative of medium rainfall regions in Austria (Merz et al., 
2006). Random rc increase the elasticity ε1, which is related to the 
possibility of combinations of large rainfall with large runoff co-
efficients, which steepens the flood frequency curve and thus increases 
ε1 (Viglione et al., 2009). More skewed beta distributions led to an even 
larger increase of the elasticity ε1 (not shown here). On the other hand, 
the runoff coefficient has little influence on ε2, as it does not modulate 
the interplay of k and d. 

For our analyses, instead of using the nearest rain gauge to each 
catchment, we interpolated the parameters of the rainfall model 
(Equation (2)) to the catchment centroids, to be able to make use of all 
rain gauges (as in some cases the same rain gauge would be assigned to 
multiple catchments). We used kriging with external drift (elevation was 
used as auxiliary variable as it outperformed ordinary kriging) by means 
of the statistics package “gstat” version 2.0.2 of R version 4.0.3 
(Pebesma & Wesseling, 1998). We compared the IDF curves from 
interpolated rainfall parameters with those of the rain gauge nearest to 
the catchment centroid and they were similar. 

3.3. Correlation analysis 

In order to interpret the elasticities in the context of comparative 
hydrology, we correlated the rainfall model parameters (λP,ψP, ηP) and 
streamflow model parameters (λq, ψq, ηq) with catchment attributes, 
climate indicators and event runoff coefficients (Table 1). Topographic 
indices were taken from a digital elevation model of Austria (Rieger, 
1999). The river network density was estimated from a digital river 
network map at a scale of 1:50000 (Fürst, 2003). Soil depth and bulk 
density were obtained from the ISRIC (International Soil Reference 

Information Centre) World Soil Information database “SoilGrids” (Hengl 
et al., 2017). Soil groups were obtained from a digital soil map for 
Austria (Österreichische Bodenkundliche Gesellschaft, 2001). Geology 
of each catchment was taken from a digital geological map of Austria 
(Weber et al., 2019). Long-term mean annual (MAP) and mean seasonal 
summer rainfall (MSP) based on more than 1,000 daily rainfall gauges 
were taken from Parajka et al. (2005). Event runoff coefficients as 
analyzed by Merz et. al. (2006) were available in 342 of the 428 
catchments for the summer season for an average of 131 event runoff 
coefficients per catchment. 

3.4. Significance tests 

To support the analysis of regional differences of the model param-
eters and the elasticities, we applied the non-parametric Kruskal–Wallis 
test to examine whether parameters/elasticities of different regions 
originate from the same distribution (Kruskal & Wallis, 1952). The test 
does not assume normally distributed residuals. Additionally, we 
applied Dunn’s Multiple Comparison test (Dunn, 1964) with a Bonfer-
roni correction of the experiment-wise error rate (e.g. Armstrong, 2014) 
to identify which pairs of the regions are significantly different. 

4. Results 

4.1. Rainfall model parameters and rainfall mechanism 

We first investigated the estimated parameters of the rainfall model 
(Equation (2)). There is a negative dependency between the scale 
parameter λP and the location parameter ψP (Fig. 4a) (Spearman cor-
relation rs = − 0.62, p less than 0.05). This dependency seems to be 
related to regional differences in the rainfall processes. Annual rainfall 
extremes in the West (dark blue points in Fig. 4) tend to be large with 
little variability (high ψP, small λP). In the East (yellow and red points in 
Fig. 4), annual rainfall extremes tend to be small (small ψP) but high 
rainfall extremes are still possible (high λP). There is a positive de-
pendency between λP and the scaling parameter ηP (rs = 0.86,p < 0.05) 
(Fig. 4b) with the western regions exhibiting low ηP and λP and the 
eastern regions exhibiting high ηP and λP. This pattern is aligned with the 
dominance of orographic rainfall in the West and that of convective 
rainfall in the East. A negative dependency between ψP and ηP (rs =

− 0.56,p < 0.05) exists, i.e. high rainfall amounts (high ψP) are related 
to rainstorms that are less peaky (small ηP) (Fig. 4c). 

4.2. Comparison of rainfall and streamflow 

Cumulative distribution functions (CDFs) of the rainfall and 
streamflow extremes stratified by the five rainfall regions are given in 
Fig. 5 and Fig. 6. At a 1hr duration (Fig. 5, top), the CDFs of rainfall tend 
to be flatter in the orographic regions (e.g. Western orographic) than in 
the regions more strongly influenced by convective mechanisms (e.g. 
Eastern mixed). The streamflow CDFs in the Northeastern, Eastern and 
Southern regions represent smaller values than in the West and North, 
which is much more a reflection of runoff generation and routing than of 
rainfall given the rather similar rainfall CDFs. Moreover, streamflow 
CDFs are considerably steeper in the East compared to the West: for 
example, the median streamflow at the 99% percentile is 4.9 times 
higher than at the 5% percentile in the Northeastern convective zone, 
while it is only 2.3 times higher in the Western orographic region. The 
shapes of the streamflow CDFs within each region are more diverse than 
those of rainfall (Fig. 5, bottom row), again reflecting runoff generation 
and routing processes. The catchments indicated by dashed and dotted 
lines are impacted by Karst springs and glaciers, respectively, which 
further increase the within-region variability. At a duration of 24hrs, 
intensities of rainfall and streamflow are lower, as expected. However, 
the steepness (i.e. the CV) of the 24hr and 1hr durations are the same, as 

Fig. 9. Elasticity ε1 of extreme streamflow to changes in extreme rainfall 
assuming d = const. in five rainfall regions (Fig. 1b), plotted for d = 1hr and the 
return periods T = 2yrs (left boxplot in each region) and d = 1hr and T = 100yrs 
(right boxplot in each region). Elasticity is the change in percentage of iq when 
iP is increased by 1%. Boxes represent the 25th and 75th percentiles, lines 
within the median. 
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the scaling models (Equations (2) and (3)) apply the same Gumbel dis-
tribution scaled over different durations. The majority of karstic and 
glaciated catchments exhibit higher streamflow intensities compared to 
the rainfall. These may be related to factors other than rainfall such as 
glacier melt and differences between orographic and hydrologic catch-
ment area. 

The rainfall and streamflow model parameters reflecting the rainfall 
and flood intensities (shown in Fig. 5 and Fig. 6) are given in Fig. 7 
(corresponding maps in Fig. A3). The “Eastern mixed” region exhibits 
the highest values of the scale parameter λP, reflecting the high vari-
ability of rainfall extremes, while the variability of streamflow extremes 
(λq) is highest in the Northern orographic region (Fig. 7a, also see 
Fig. A3a, b). Hence, the variability of streamflow extremes is spatially 
not aligned with that of the rainfall extremes. 

The location parameters ψP and ψq (Fig. 7b) have a similar spatial 
distribution (rs = 0.69). Both are smallest in the Northeastern convec-
tive region and largest in the Western orographic and the Southern 
mixed regions. Both parameters are highest in the high elevation zones 
of Austria (Fig. A3c, d). This result can be interpreted as the influence of 
orographic rainfall and perhaps also higher runoff coefficients (Merz & 
Blöschl, 2009b). Also, as ψP and ψq define the CV of the extremes (see 
Equation (6)), one can conclude that the CV of rainfall is higher in the 
lowlands influenced by convective mechanisms compared to the alpine 
orographic regions. The CV of streamflow is likewise higher in the dry 
lowlands and decreases with increasing elevation (and thus increasing 

annual rainfall), possibly due to the smaller variability of runoff co-
efficients (Merz & Blöschl, 2009b). The lowest CV of streamflow occurs 
in the glaciated areas as the values of ψq are the highest (also see 
Fig. 1a). Thus, as opposed to the scale parameters (see above), the CVs of 
rainfall and floods are spatially aligned. 

The scaling parameters of the streamflow ηq are generally lower than 
the ones of the rainfall (ηP) reflecting the dampening effects of catch-
ment processes (Fig. 7c). Moreover, ηP and ηq are spatially aligned with 
the largest values in the Northeastern convective and Eastern mixed 
regions. This behavior reflects the higher convective activity and 
flashier flood response (also see Fig. A3e, f). There are striking simi-
larities between the spatial distribution of ηq and the concentration 
times of catchments as analyzed by Gaal et al. (2012) from flood events 
(Gaal et al. (2012), Fig. 4), which is not surprising as ηq reflects the 
catchment response time. 

Dunn’s multiple comparison test (Table A1) reveals that parameters 
are often significantly different at the 5% level between the Alpine re-
gions and the lowlands (e.g. between the Northeastern convective re-
gion and the Southern mixed region), whereas within these two major 
zones, significant differences of fewer parameters are identified (e.g. 
between the Western orographic regions and the Southern mixed 
region). 

Fig. 10. Elasticity ε1 of extreme streamflow 
iq to changes in extreme rainfall iP assuming 
duration d = const. = 1hr in Austria. Elas-
ticity is the change in percentage of iq when 
iP is changed by 1% and is shown as points 
for each gauged catchment where the sizes 
represent the values of the elasticities and 
the colors the rainfall regions (Fig. 1b). 
Elasticities interpolated from these catch-
ment values (ordinary kriging) are shown as 
background pattern. (a) ε1 d = 1hr at T =

2yrs, (b) ε1 d = 1hr at T = 100yrs.   
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4.3. Spatial correlation of model parameters 

The statistical properties of the streamflow extremes can only be 
partly explained by the properties of extreme rainfall. Other potential 
controls include catchment topography, soil properties, geology and 
long-term climate. All of these controls are assessed by the correlation 
analysis of Fig. 8. All correlations discussed below are significant at the 
5% level. 

The correlation between the scale parameter of streamflow λq and 
that of rainfall λP is low, as would be expected from Fig. 7a, but higher 
correlations of λq exist with catchment area (rs= − 0.46) and mean 
topographic slope (rs = 0.33), suggesting that streamflow extremes are 
more variable in small and in steep than in large and flat catchments. λq 

is negatively correlated with soils of high water holding capacity such as 

Phaeozem and Chernosem (IUSS Working Group WRB, 2015) 
(rs = − 0.30 and rs = − 0.31), suggesting that pervious soils reduce 
streamflow variability. Reduced variability can also be detected for 
Phylitte geology (rs = − 0.36), which is a deeply weathered meta-
morphic rock with deep flow paths and slow flood response (Gaal et al., 
2012). Furthermore, a positive correlation exists between λP and the CV 
of the event runoff coefficients rcCV (rs = 0.62) as well as λP and the 
skewness of the event runoff coefficients rcCS (rs = 0.51), suggesting 
that the latter are more variable and skewed in regions of increased 
rainfall variability. 

The location parameter of streamflow ψq is positively correlated with 
the location parameter of rainfall extremes ψP (rs = 0.69, in line with 
Fig. 7b) , mean annual (MAP) and summer rainfall (MSP) (rs = 0.38 and 
rs = 0.55), which can be interpreted through rainfall mechanisms: MAP 
and MSP increase with mean catchment elevation due to orographic 
effects (e.g. rs = 0.62 between MSP and elevation), which is consistent 
with the positive correlation between elevation and ψP (rs = 0.71). ψq 

and ψP are negatively correlated with rcCV (rs = − 0.62 and rs = − 0.5) 
and with rcCS (rs = − 0.5 and rs = − 0.41), suggesting that event runoff 
coefficients tend to be less variable and less skewed in regions of high 
rainfall amounts. 

The scaling parameter ηq is positively correlated with that of pre-
cipitation ηP (rs = 0.30) pointing towards a relationship between the 
convective activity of rainfall and the flashiness of catchments. How-
ever, there are higher absolute correlations between ηq and catchment 
area (rs = − 0.35) and the stream network density (rs = 0.48), which 
suggests that the flashiness of streamflow hydrographs decreases with 
catchment area and increases with stream network density, as would be 
expected. 

4.4. Elasticities 

The elasticity ε1 of streamflow relative to changes of the rainfall 
assuming d = const. (Equation (8)) is characterized by a distinct spatial 
pattern (Fig. 9 and Fig. 10). The elasticities ε1 are shown in Fig. 9 as 
boxplots and in Fig. 10 as maps. The sizes of the points in Fig. 10 
represent the values of ε1 for each gauged catchment (at the catchment 
centroids), the background pattern is generated by interpolation from 
these catchment values (ordinary kriging) and is intended to better 
highlight the regional patterns. For T = 2yrs, the rainfall-streamflow 
relationships are highly elastic (i.e. ε1≫1) in the lowlands in the 
North, Northeast and Southeast (e.g. Northeastern convective rainfall 
region) compared to the high Alpine regions (e.g. Western orographic 

Fig. 11. Elasticity ε2 assuming T = const. of streamflow to rainfall extremes of 
all catchments in the five rainfall regions in Austria (Fig. 1b). Elasticity is the 
change in percentage of iq when iP is increased by 1%. Boxes represent the 25th 
and 75th percentiles, lines within the median. 

Fig. 12. Spatial patterns of the elasticity ε2 of all catchments assuming T = const. for the five rainfall regions in Austria (Fig. 1b). Elasticity is the change in per-
centage of iq when iP is increased by 1% and is shown as points for each gauged catchment where the sizes represent the values of the elasticities and the colors the 
rainfall regions (Fig. 1b). Elasticities interpolated from these catchment values (ordinary kriging) are shown as background pattern. 
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region) where the elasticity is closer to unity i.e. ε1 ∼ 1 (left boxplots of 
Fig. 9 and Fig. 10a). In the glaciated regions of the highest summits of 
Austria (regions in red colors in Fig. 10, also see glaciated areas in 
Fig. 1a) the relationships are inelastic (ε1< 1). For a return period of T =

100yrs (right boxplots in Fig. 9 and Fig. 10b), the spatial pattern remains 
similar, but the elasticities tend towards unity. 

Although our approach of analyzing the rainfall-flood relationship 
refers to a comparison of distribution functions rather than individual 
events, we additionally analyzed the synchronicity of the dates of annual 
rainfall and streamflow extremes, in order to explore whether the event 
producing the largest annual streamflow are often the same as those 
producing the largest rainfall. To this end, stream gauges were 
compared to the nearest rain gauges, with at least ten years of recording 
overlap. Fig. A4 shows the percentage of annual rainfall and streamflow 
maxima that occurred within 24hrs of each other for the duration of 1hr 
(left boxplots) and 24hrs (right boxplots), stratified by rainfall regions. 
The synchronicity of both durations is highest in the lowlands of the 
North and East, which are regions of flashy catchment response repre-
sented by large ηq (Fig. A3f). In these regions, also elasticities ε1 (Fig. 9) 
are highest. This is in line with our simulation experiments (Fig. 3c), 
which indicated small storage coefficients k to cause high elasticities ε1. 
On the other hand, synchronicities are smallest in the Alpine regions (e. 
g. Western orographic region) where values of ηq are low. 

The elasticity ε2 of streamflow relative to rainfall changes assuming 
T = const. (Equation (11)) is highest in the dry lowlands in the Northeast 
and East (Northeastern convective and Eastern mixed rainfall region) 
(Fig. 11 and Fig. 12). As in the case of Fig. 10, the sizes of the points in 
Fig. 12 represent the values of ε2 for each gauged catchment (at the 
catchment centroids), while the background pattern is generated by 
interpolation from these catchment values (ordinary kriging). In these 
regions catchment concentration times tend to be short as indicated by 
high ηq (Fig. 7c), and storm durations tend to be short indicated by high 
ηP (as high values ηP indicate fast decrease of rainfall intensity with 
duration), also indicated by the short average wet spell duration in 
Fig. A2b). Generally, the closer ε2 is to unity, the more similar is the 
duration of flood triggering rainstorms and the concentration time of the 
catchment (Equation (11)). On the other hand, the elasticities ε2 in the 
Alpine regions (e.g. Northern orographic region) are lower. 

The pronounced similarities of the spatial patterns of ε1 (Fig. 10) and 
the location parameter of the streamflow ψq (Fig. A3d), as well as the 
spatial patterns of ε2 (Fig. 12) and the scaling parameter of the 
streamflow ηq (Fig. A3f) suggest that catchment processes dominate the 
runoff transformation, since ε1 is defined by the location parameters 
(Equation (9)) and ε2 by the scaling parameters (Equation (11)). The 
dominance of catchment processes is also visible in the cumulative 
distribution functions of rainfall and streamflow (Fig. 5 and Fig. 6), with 
more pronounced differences between the CDFs of the streamflow of 
different regions compared to the rainfall. Moreover, the elasticity ε1 
(T = 2yrs) is positively correlated with the CV of the event runoff co-
efficients rcCV (rs = 0.59) and the skewness of the runoff coefficients 
rcCS (rs = 0.49), indicating that ε1 is increased in regions of more var-
iable and skewed runoff coefficients. Dunn’s multiple comparison test 
(Table A1) reveals that there are no significant differences between ε1 in 
the Alpine Western orographic and Southern mixed regions. The situa-
tion is similar for ε2, where no statistically significant differences can be 
detected between the Alpine Western orographic, Northern orographic 
and Southern mixed regions, and between the Northeastern convective 
and the Eastern mixed regions. As with the model parameters, it appears 
that the regional differences of the elasticities can be broadly general-
ized into differences between the precipitation-rich Alps and the dry 
lowlands. 

5. Discussion 

Our analyses based on the concept of comparative hydrology unravel 

the most important factors, including dominating rainfall and catchment 
characteristics that control the differences between the distributions of 
rainfall and streamflow extremes. 

The moments and parameters of the rainfall distribution are aligned 
with the regional rainfall mechanisms. In the high elevation catchments 
where orographic rainfall dominates, the location parameter ψP tends to 
be high and the scale parameter λP tends to be small, i.e. the rainfall 
extremes tend to be large with little temporal variability (see Fig. A3a 
and A3c). The opposite applies to catchments in the lowlands where 
convective rainfall extremes are more frequent. The relationship be-
tween rainfall magnitude and variability is reflected by a high negative 
correlation between ψP and λP (Fig. 4a and Fig. 8, rS = − 0.62). The 
regional rainfall mechanisms also manifest themselves in the spatial 
distribution of the scaling parameter ηP, which tends to be higher in the 
convective lowlands than in the mountainous regions with dominant 
orographic rainfall (Fig. A3e). A higher parameter ηP implies that the 
intensity decreases more strongly with duration which can be expected 
for the short rainstorms that occur frequently in the lowlands. 

As in the case of rainfall, the location parameter of streamflow ψq is 
higher in the mountain catchments than in the lowlands (see Fig. A3d), 
reflected by a strong positive correlation of ψq with catchment elevation 
(Fig. 8, rS = 0.77) and mean summer rainfall (Fig. 8, rS = 0.55). This 
means, the magnitude of floods tends to be higher in the orographic 
rainfall regions, not only due the higher extreme rainfall magnitudes but 
also due to high annual rainfall amounts, possibly leading to high soil 
moisture levels, persistently high runoff coefficients and to a propensity 
towards saturation excess overflow. The variability of streamflow rep-
resented by the scale parameter λq, however, is controlled by catchment 
topography, soil type and the geology (e.g. correlations with slope rS =

0.33, Rendzina soils rS = 0.21 or Carbonate rock geology rS = 0.28, 
Fig. 8) and is thus highest along the Alpine ridge (Fig. A3b), while the 
variability of the rainfall represented by λP is mainly controlled by 
elevation (see negative correlation between λP and elevation in Fig. 8) 
and is highest in the lowlands (Fig. A3a). Some of the highest values of λq 

relate to karstic catchments along the Alpine divide (see Fig. 1a catch-
ments with crosses, Fig. A3b and positive correlation between λq and 
Carbonate rock in Fig. 8). In karstic catchments, during periods of 
average rainfall events, most of the rainfall may be stored in the frac-
tured carbonic rocks, while more extreme rainfall events can saturate 
the epikarst zone inducing large streamflow extremes (Li et al., 2017) 
and thus more variable floods. Such step changes in streamflow ex-
tremes may also occur in other geological formations (Rogger et al., 
2012). The scaling parameter ηq (Fig. A3f), on the other hand, is highest 
in the lowlands, showing a similarity with the spatial distribution of the 
rainfall scaling parameter ηP, which is also lowest in the lowlands. 

For the comparison of rainfall and flood distributions, one can 
conclude, not surprisingly, that higher rainfall extremes tend to lead to 
higher floods, as the positive correlation between the location parame-
ters ψP and ψq indicates (Fig. 8, rS = 0.69). This relationship is more 
distinct in regions dominated by orographic rainfall, where runoff co-
efficients are persistently high (Merz & Blöschl, 2003), such as in the 
Northern orographic region (rS = 0.70). The relationship is not existent 
in the Northeastern convective region, where runoff coefficients tend to 
be lower and more random (Merz & Blöschl, 2003) (rS = 0.01). In this 
context, the relationship between ψP and elevation is also more distinct 
for the Alpine orographic regions (e.g. correlation between ψP and 
elevation rs = 0.81 in the Northern orographic region) than in the 
convective lowlands (e.g. rs = 0.35 in the Northeastern convective re-
gion), which is in line with Barbero et al. (2019) who found stronger 
positive correlation between expected values of daily rainfall compared 
to hourly rainfall, as the former integrate large-scale dynamics and 
orographic effects (Barbero et al., 2019). 

Since the CV is a direct function of the location parameter, similar 
correlations apply between CVq and CVP. In other words, a steeper 
rainfall frequency curve is associated with a steeper flood frequency 
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curve, which is in line with previous studies (e.g. Merz & Blöschl, 2003; 
Smith et al., 2011; Villarini & Smith, 2010). The scale parameter of 
rainfall is not aligned with that of streamflow, reflected by rS = − 0.14 
between λP and λq and different spatial patterns (Fig. A3a, A3b and 
Fig. 8). 

The spatial patterns of the scaling parameters ηP and ηq are to some 
extent aligned (Fig. 8, rS = 0.3) with larger parameters in the North and 
East and lower in the West. This similarity suggests that the response 
times of catchments to the storms producing the annual floods tend to be 
shorter in regions dominated by convective activity (North and North-
east), while the opposite is the case in the West. The similarity is possibly 
due to an interplay of climatic and catchment processes over time, 
modulated by the geology (Gaal et al., 2012). For example, the efficient 
drainage network in the Southeast of Austria leads to short response 
times and may have evolved from the dominating convective rainfall 
mechanisms in the region (see for example high frequency of hailstorms 
in Fig. A1) as intense convective rainstorms increase the overland flow, 
which in return influences the drainage network (Abrahams & Ponc-
zynski, 1984; Tucker & Bras, 2000). 

We quantified the relationship between rainfall and flood probabil-
ities by elasticities. ε1 represents the percent change of flood discharge 
for a 1% in extreme rainfall change assuming duration d is constant. 
Elasticities ε1 are highest in the dry lowlands in the Northeast and 
Southeast (Fig. 9 and Fig. 10). For T = 2yrs, they are more than four 
times higher than the mean of the Alpine catchments. That is, in the dry 
lowlands, flood frequency curves are considerably steeper than the 
rainfall frequency curves, which is consistent with the regional analyses 
(Merz & Blöschl, 2009a, 2009b). Viglione et al. (2009) suggested that in 
dry regions, steep flood frequency curves can result from the occurrence 
of extraordinary events with runoff coefficients exceeding by far those of 
other events in the catchment (Gutknecht et al., 2002; Komma et al., 
2007), reflecting a highly skewed distribution of runoff coefficients. 

In the mountainous catchments of the study region, where annual 
rainfall is above 1000 mm yr− 1, elasticities ε1 are closer to unity (Fig. 9 
and Fig. 10). In these catchments the high orographic rainfall may 
frequently lead to soil saturation and thus event runoff coefficients tend 
to be high (Merz & Blöschl, 2009b), and therefore the steepness of the 
flood frequency curves is similar to that of the IDF curves. Another 
possible explanation is the slower catchment response in parts of the 
high rainfall regions (Gaal et al., 2012), as a result of a more pervious 
geology, for example in the Southern mixed rainfall zone where the 
Phylitte geology reduces the response time (Fig. 1c) and thus may 
reduce elasticity as illustrated in the simulation experiment (Fig. 3). This 
is because, for slow response times, the highest rainfall extreme of year 
and a given duration does not necessarily cause the highest flood peak in 
that year. The lower correspondence of rainfall and flood events is also 
in line with their lower synchronicity (Fig. A4). The decoupling is even 
more pronounced in the glaciated catchments (Fig. 10 red areas) where 
elasticities drop below unity, as a consequence of glacier melt that is 
more relevant to floods than rainfall extremes. 

ε2 represents the percent change of flood discharge for a 1% change 
in extreme rainfall assuming the return period T is constant. In the 
model ε2 is represented by ηq

ηP 
(Equation (11)), i.e. the ratio of the tem-

poral scaling of streamflow and extreme rainfall. Regions of high elas-
ticities ε2 are regions of fast catchment response as indicated by (Gaal 
et al., 2012), which is aligned with values of ηq and to some degree ηP 

(Fig. 11, Fig. 12, and Fig. A3f). Fast catchment response is mainly related 
to shallow soils, and clay and marl and Flysch geologies with low 
infiltration (Fig. 1c), as well as an efficient drainage network (Gaal et al., 
2012; Holko et al., 2011). In these regions, also relevant storm durations 
tend to be short due to the dominance of convective rainfall, which in 
combination with the fast catchment response explains the high 

elasticities ε2. Regions of low elasticities ε2 on the other hand are those 
with slow catchment response as in the South of the country where the 
deeply weathered Phylitte geology dominates. 

While, to our knowledge, no regional, data-based studies on elas-
ticities of streamflow extremes exist, our results are in line with previous 
studies on elasticities of annual streamflow that show largest elasticities 
in dry climates (e.g. Chiew, 2006; Sankarasubramanian et al., 2001; 
Tang et al., 2019; Yang & Yang, 2011). 

Elasticities ε1 tend towards unit elasticity with increasing return 
period, as can be seen from Equation (9), Fig. 9 and Fig. 10. This 
behavior is a consequence of the model formulation and fully consistent 
with hydrological reasoning. For both, infiltration excess and saturation 
excess mechanisms, runoff tends to become more similar to rainfall as 
the rainfall intensity increases, and if soil saturation is reached, any 
additional rainfall transforms into surface runoff. This behavior implies 
that the gradients of the tails of the flood and rainfall distribution 
become similar (i.e. ε1 = 1), which is the rationale behind the gradex 
method (Guillot, 1993; Merz & Blöschl, 2008; Naghettini et al., 1996). 
Our results suggest that this assumption is fully consistent with the 
combined intensity-duration-frequency analysis adopted here and found 
suitable for the Austrian data. Given the similarity in runoff generation 
mechanism in terms of increasing runoff contributions with increasing 
return period (McDonnell, 2013), it is possible that the tendency to-
wards unit elasticity with increasing return period may hold in many 
regions throughout the world. However, it may be of interest to test the 
elasticity behavior using more complex models, both similar combined 
models but with a larger number of parameters, and joint distribution 
models such as Copulae (e.g. Balistrocchi & Bacchi, 2011; Klein et al., 
2010), which allow for a more flexible description of the intensity- 
duration-frequency analysis. 

In our analysis of elasticities we assumed that the return periods of 
rainfall and floods are the same. This assumption seems natural given 
that it provides a common reference point for comparing distributions. 
We also assumed that the durations of rainfall and floods are the same 
(dq = dP = d). However, for the models adopted here (Eq. (2) and (3)), 
the elasticity ε1 in fact does not depend on this assumption and is also 
valid for dq ∕= dP (see also Equation (9)), as long as Tq = TP = T, dq =

const. and dP = const. It is therefore equally valid for e.g. dq = 1hr 
(approximately representing peak flow), and dP > 1hr (representing the 
various durations of the IDF curve). On the other hand, for ε2, dq = dP =

d is a prerequisite, while the assumption Tq = TP = T is not necessary, 
but Tq = const. and TP = const. The independences of ε1 on d and ε2 on T 
result from the assumption of self-affinity in the scaling models for 
rainfall and runoff (equations (2) and (3)), in which the same extreme 
value distribution is scaled by durations. While these scaling models 
were found to be suitable for this study region, this may not apply to 
other regions, where other scaling models, perhaps with more parame-
ters, may be more appropriate. 

Our work has various implications. The sensitivity of floods to 
extreme rainfall as proposed here may be useful when extrapolating to 
flood frequency distributions beyond observed floods. One possibility 
would be a Bayesian framework (Costa & Fernandes, 2017; Viglione 
et al., 2013) which allows incorporating this type of process based in-
formation. For such applications it may be worth considering alternative 
distributions such as the GEV that have more flexibility in the tail 
behavior. In particular, if the flood distribution is heavy tailed while the 
associated rainfall distribution is not, the limiting elasticity may be 
greater than unity. Additionally, there is potential for elasticity analyses 
in the context of climate impact studies. Analyzing long-term changes of 
the elasticity of extremes may be useful for detecting long-term vari-
ability in rainfall and streamflow time series to assist in hydrological 
model calibration for changing conditions (Duethmann et al., 2020; Lun 
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et al., 2020). More generally, the elasticity of extremes may also be used 
as a benchmark tool for stochastic rainfall-runoff modelling frameworks, 
for example weather generators coupled with hydrological models (e.g. 
Bennett et al., 2019; Gao et al., 2020; Müller-Thomy & Sikorska, 2019; 
Okoli et al., 2019). 

6. Conclusion 

In this paper, we present a new approach of comparing the rainfall- 
flood relationship based on quantiles from intensity-duration-frequency 
models. Instead of comparing the rainfall-flood relationship of individ-
ual events (e.g. Viglione et al., 2009), we compare distribution functions 
of extreme rainfall and streamflow without event-based linkages. For 
this comparison, we apply the elasticity concept to extreme rainfall and 
streamflow, which sets the study apart from the traditional application 
of the elasticity to annual rainfall and streamflow (e.g. Chiew, 2006; 
Sankarasubramanian et al., 2001; Tang et al., 2019; Yang & Yang, 
2011). Our results suggest that the extreme rainfall elasticity to floods 
behaves similarly to the annual rainfall elasticity to annual streamflow. 
Elasticities are higher in regions of low annual rainfall (where rainfall 
events are primarily short and convective) than in regions of high annual 
rainfall (where rainfall events are longer and more often of orographic 
nature). These regional differences of elasticities are related to a variety 
of factors, including the long-term climate, topography, soils and geol-
ogy. For example, high elasticities in the dry regions are related to more 
variable and skewed event runoff coefficients, which may be caused by 
the dominance of infiltration excess mechanisms associated with high 
rainfall intensities. In future research, it would be interesting to compare 
the proposed distribution based approach with event based approaches 
such as those of Viglione et al. (2009), to explore whether the elasticities 
identified here provide information on how return periods from rainfall 
and streamflow relate to each other for individual events. 
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Appendix A  

Fig. A1. Locations of large hail events, severe wind gusts and tornadoes in Austria, as reported to the European Severe Weather Database (ESWD) (Dotzek et al., 
2009), for the period 1900–2020. In case of multiple locations reported for the same hail or tornado track, the first reported location is shown. 
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Fig. A2. (Top) Mean duration of rainfall wet spells in summer (June, July, and August) (in hours). (Bottom) Mean duration of rainfall dry spells (in hours). Points 
represent the rain gauge locations and their colors refer to the five rainfall zones in Austria (Fig. 1b). 
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Fig. A3. Spatial patterns of the rainfall model parameters (left panel) and streamflow model parameters (right panel). Colored points for the rainfall parameters 
represent the rain gauges, colored points for the streamflow parameters represent the centroids of gauged catchments. Coloring of the points represents the five 
rainfall zones in Austria (Fig. 1b). The rainfall parameters include λP (scale parameter representing rainfall variability), ψP (location parameter representing the 
magnitude, ceteris paribus) and ηP (scaling parameter indicating convective activity). The streamflow model parameters include λq (scale parameter representing 
streamflow variability), ψq (location parameter representing the magnitude, ceteris paribus) and ηq (scaling parameter representing catchment response). 

Fig. A4. Synchronicity of rainfall extremes and streamflow expressed as the percentage of annual maxima (AMAX) of rainfall and streamflow recorded within 24hrs 
for annual maxima of a duration d = 1hr (left boxplot in each region) and a duration of d = 24hrs (right boxplot in each region). Colors of boxplot represent each of 
the five rainfall regions in Austria (Fig. 1b). Boxes represent the 25th and 75th percentiles, lines within the median. 
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Table A1 
Adjusted p-values (Bonferroni adjustment) from pairwise multiple-comparison of variables (model parameters and elasticities) using Dunn’s test, for all possible pairs 
of the rainfall regions. For each variable, a Kruskal–Wallis test as preliminary analysis was rejected. Codes refer to the rainfall regions: (1) Western orographic, (2) 
Northern orographic, (3) Northeastern convective, (4) Eastern mixed, (5) Southern mixed.  

Parameter Pairs of rainfall regions 

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

λq  0.1197 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.3704 0.0006 0.0079 
ψq  0.0000 0.0000 0.0000 0.5590 0.0000 0.0160 0.0000 0.0013 0.0000 0.0000 
ηq  0.6402 0.0001 0.0000 0.5328 0.0000 0.0000 0.1745 0.7980 0.0000 0.0000 
λP  0.0000 0.0000 0.0000 0.0004 0.1593 0.0000 0.0000 0.0000 0.0000 0.0000 
ψP  0.0000 0.0000 0.0000 0.9243 0.0017 0.8541 0.0000 0.0042 0.0000 0.0000 
ηP  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0172 0.103 0.0000 0.0000 
ε1 (T = 2yrs) 0.0000 0.0000 0.0000 0.5146 0.0000 0.0042 0.0000 0.0051 0.0000 0.0000 
ε1 (T = 100yrs) 0.0000 0.0000 0.0000 0.4824 0.0000 0.0013 0.0000 0.0141 0.0000 0.0000 
ε2  0.4426 0.0190 0.0000 0.1494 0.0001 0.0000 0.3131 0.8944 0.0000 0.0000  
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